ME 261: Numerical Analysis

Lecture-7 & 8: Root Finding

Md. Tanver Hossain Department of Mechanical Engineering, BUET <u>http://tantusher.buet.ac.bd</u>

Fixed Point Iternation Method for Finding Root

- Open methods employ a formula to predict the new root from initial guess
- The simplest formula can be developed for simple fixed-point iteration by rearranging the function f(x) = 0 so that x is on the left-hand side of the equation as:

$$x = g(x)$$
$$x^{2} - 2x + 3 = 0$$
$$x = \frac{x^{2} + 3}{2}$$
$$\sin x = 0$$
$$x = \sin x + x$$

 $r - \sigma(r)$

$$x_{i+1} = g(x_i)$$
$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| 100\%$$

Some examples of alternation form, g(x) for original function, f(x)=0

$$f(x) = x^{2} - 2x + 3 = 0$$

$$\Rightarrow x = \frac{x^{2} + 3}{2} \qquad \text{in the form } , x = g_{1}(x) ; g_{1}(x) = \frac{x^{2} + 3}{2}$$

$$\Rightarrow x = \pm \sqrt{2x - 3} \qquad \text{in the form } , x = g_{2}(x) ; g_{2}(x) = \pm \sqrt{2x - 3}$$

$$\Rightarrow x = x^{2} - x + 3 \qquad \text{in the form } , x = g_{3}(x) ; g_{3}(x) = x^{2} - x + 3$$

$$\Rightarrow x = -\frac{3}{(x - 2)} \qquad \text{in the form } , x = g_{4}(x) ; g_{4}(x) = -\frac{3}{(x - 2)}$$

$$f(x) = e^{-x} - x = 0$$

$$\Rightarrow x = e^{-x} \quad \text{in the form, } x = g_1(x) ; g_1(x) = e^{-x}$$

$$\Rightarrow x = -\ln x \quad \text{in the form, } x = g_2(x) ; g_2(x) = -\ln x$$

$$f(x) = \sin x = 0$$

 $\Rightarrow x = \sin x + x$ in the form, $x = g_1(x)$; $g_1(x) = \sin x + x$

Find the root of the given equation using Fixed Point Iteration Method for an initial guess, $x_i = 0.1$. Continue root finding approximate error falls less then 0.00005%.

$$f(x) = \frac{1}{(1+x^2)^2} - 0.65 \tan^{-1} \left(\frac{1}{x}\right) + \frac{1}{1+x^2}$$
$$x = g(x) = \frac{13}{30} (1+x^2)^2 \tan^{-1} \left(\frac{1}{x}\right) - \frac{13}{30} x (1+x^2)$$

lt	xi	g(xi)	error, εr (%)
1	0.1	0.6065355	83.51291925
2	0.6065355	0.4720352	28.49371747
3	0.4720352	0.4819150	2.050130461
4	0.481915	0.4807436	0.243664193
5	0.4807436	0.4808784	0.028032871
6	0.4808784	0.4808629	0.003237654
7	0.4808629	0.4808647	0.000373766
8	0.4808647	0.4808645	4.3151E-05

 Two alternative graphical methods for determining the root of f (x) = e^{-x} – x. (a) Root at the point where it crosses the x axis; (b) root at the intersection of the component functions.

Graphical depiction of Converging Condition for Fixed Point Iteration Method

$$x_{i+1} = g(x_i)$$

Suppose that the true solution is

 $x_r = g(x_r)$

Subtracting these equations yields

$$x_r - x_{i+1} = g(x_r) - g(x_i)$$

derivative mean-value theorem

$$g'(\xi) = \frac{g(b) - g(a)}{b - a}$$

let $a = x_i$ and $b = x_r$,

$$g(x_r) - g(x_i) = (x_r - x_i)g'(\xi)$$

$$x_r - x_{i+1} = (x_r - x_i)g'(\xi)$$

Mean Value Theorem for Derivatives

If f(x) is continuous on [a, b] and a differentiable function over (a,b), then a point *c* between *a* and *b*: $\frac{f(b)-f(a)}{b-a} = f'(c)$

Monotonic propagation: Root moves on one side of true root

Oscillatory propagation: Root moves on both sides of true root

y |

Fixed Point Iternation Method for Finding Root

Find the root for the following equation by using the fixed point iteration. Try to find the solution with $x_0=1.0$ and $x_0=4.0$ as your initial guesses.

$$f(x) = e^{x} - 10x$$
$$x = g(x) = \frac{e^{x}}{10} \qquad x_{i+1} = \frac{e^{x_i}}{10}$$

$$x_0 = 1.0; dg(x)/dx = 0.1 @ x_0$$

xi	g(xi)	Error(%)
1	0.271828	267.8794
0.271828	0.131236	107.129
0.131236	0.114024	15.0955
0.114024	0.112078	1.736144
0.112078	0.11186	0.194773
0.11186	0.111836	0.02179
0.111836	0.111833	0.002437
0.111833	0.111833	0.000273
0.111833	0.111833	3.05E-05

 $x_0 = 4.0; dg(x)/dx = 5.4598 @ x_0$

xi	g(xi)	Error(%)
4	5.459815	26.73744
5.459815	23.50539	76.77208
23.50539	1.62E+09	100
1.62E+09	#NUM!	#NUM!
#NUM!	#NUM!	#NUM!

- If we start off the solution with $x_0=1.0$, we will converge to the root at x = 0.1118 since $|dg/dx(x_0)| < 1.0$.
- If we start the solution with x₀=4.0, will NOT converge to the root at x=3.5772 and the solution will blow up since |dg/dx(x₀)| > 1.0!!

Exercise: Let
$$f(x) = x^2 - 2x - 3 = 0$$

a) Find the two roots for f(x) analytically.
b) Show that f(x) can be rearranged into the following forms called transposition:

$$x = g_{2}(x) = \frac{3}{x-2}$$
$$x = g_{3}(x) = \frac{(x^{2}-3)}{2}$$

 $x = g_1(x) = \sqrt{2x + 3}$

c) With these three expressions for $g_i(x)$, use the fixed point iteration method to find the approximate root for f(x). Start with the initial guess of $x_0=4$.

Compare your solutions to the answer you get in part a).

d) Sketch all the $g_i(x)$ and show what is happening graphically

 $x_0 = 4$

Iteration	$x = g_1(x) = \sqrt{2x+3}$		$x = g_2(x) = \frac{3}{(x-2)}$		$x = g_3(x) = \frac{x^2 - 3}{2}$	
	X	E _a	X	E _a	X	E _a
1	3.31662	-	1.5	-	6.5	-
2	3.10375	6.85%	-6	125%	19.625	66.8%
3	3.03439	2.29%	-0.375	1500%	191.07	89.7%
4	3.01144	0.76%	-1.26316	236.8%	18252.3	98.9%
5	3.00381	0.25%	-0.91935	37.4%	166573226.1	99.9%
6	3.00127	0.08%	-1.02763	10.5%		
7	3.00042	0.03%	-0.99087	3.7%		
8	3.00014	0.009%	-1.00305	1.2%		
9	3.00005	0.003%	-0.99898	0.4%		
10	3.00002	0.001%	-1.00034	0.1%		

Converging towards other root x=-1

Converging towards

root x=3

Diverging from the root

Given function,
$$x^2 - 2x = 3$$

 $\therefore f(x) = x^2 - 2x - 3 = 0$

$$x_0 = 4$$

3 alternate forms, g(x) for the solution of function, f(x) = 0

$$x = g_1(x) = \sqrt{2x+3}$$
 (A)
 $x = g_2(x) = \frac{3}{(x-2)}$ (B)
 $x = g_3(x) = \frac{x^2 - 3}{2}$ (C)

Convergence behavior depends on the nature of the alternate form, g(x)

Fig. Iterative progress of Fixed point Iteration method by graphical approach

Note that:

- It does not mean that if you have |dg(x)/dx @ x₀/ > 1, the solution process will blow up.
- Use this condition only as a good guide.
- Sometimes you can still get a converged solution if you start have |dg(x)/dx @ x₀ / > 1. It really depends on the problem to solve.

Secant Method for Finding Root

Sometimes the derivative of a function **is difficult or inconvenient to evaluate** which is a requirement of Newton's method. For these cases, the **derivative can be approximated by a backward finite difference approach**, as in-

Secant method requires two initial guesses of x. (But keep in mind that the value of f(x) is not required to change sign between the guesses)

Graphical Interpretation of Secant Method

False Position Method v.s Secant Method

Current Step

Next Step

Find a root of the equation $x^3 - 8x - 5 = 0$ using the secant method up to six significant digit.

Secant Formula:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

lt	x ₀	f(x ₀)	x ₁	f(x ₁)	X ₂	f(x ₂)	Error (%)
1	3	-2	3.5	9.875	3.084211	-0.33558	13.48123
2	3.5	9.875	3.084211	-0.33558	3.097876	-0.0532	0.441119
3	3.0842105	-0.33558	3.097876	-0.0532	3.100451	0.000388	0.083045
4	3.0978758	-0.0532	3.100451	0.000388	3.100432	-4.4E-07	0.000601
5	3.1004506	0.000388	3.100432	-4.4E-07	3.100432	-3.7E-12	6.86E-07

Comparison of the true percent relative errors ε_t for the methods to determine the roots of $f(x) = e^{-x} - x$.

20

Fig.: Characteristics of Error propagation in various root finding techniques